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LElTER TO THE EDITOR 

The Morse oscillator generalised from supersymmetry 

E Drigo Filho 
Instituto de Ffsica Tebrica, Universidade Estadual Paulista, Rua Pamplona 145,01405-SLo 
Paulo, Brazil 

Received 25 July 1988 

Abstract. Using the factorisation method in supersymmetric quantum mechanics we deter- 
mine new potentials from the Morse oscillator. We apply this method although we do not 
use the ladder operators. 

The number of systems in quantum mechanics having analytic solutions is limited. 
Thus, it is interesting to find more potentials from which we can determine the energy 
spectra. The factorisation method (FM)  has provided one way to construct new 
potentials starting from known potentials. This method has been used in the harmonic 
oscillator (Mielnik 1984, Zhu 1987) and in the Coulomb potential (Fernandez 1984). 
Subsequently Nieto (1984) and Alves and Drigo Filho (1988) verified that the relation 
between the energy spectra of the different potentials is established through a super- 
algebra using supersymmetric quantum mechanics. 

In this letter we apply the FM in the Morse potential. This potential, which has 
known solutions, was first written by Morse (1929) and treated more recently by Nieto 
and Simmons (1979) and Dahal and Sprigborg (1987). It has been used in chemical 
physics (e.g. ter Haar 1946) and in other branches of physics (e.g. Morse etal 1936). 

Considering supersymmetric quantum mechanics with N = 2 (Cooper and Freed- 
man 1983, Ravndal 1984) we define the charges 

where d and d +  are bosonic operators, and we have the supersymmetric Hamiltonian: 

H,,={Q, Q+I= (7 :) =( d + d  d d + ) .  0 
(3) 

H- is called the supersymmetric partner of H+. Both H+ and H- have the same 
spectrum except for the ground state, only H+ has a normalisated ground state with 
eigenvalue E+,o = 0. 

In order to determine new potentials we shall generalise the bosonic operators d 
and d+.  
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On the other hand, the one-dimensional Morse potential given by Nieto and 
Simmons (1979) is 

V ,  (x) = D( 1 - e-ax)2 (4) 
with the Schrodinger equation: 

$+A2(  1 - = E,$ 
d2 -- 

dY 
where A=(2mD)'"/ah,  y = a x  (-oo<y<+co), ~ , = E , / % ' ~ a n d  g 0 = h 2 a 2 / 2 m .  

The solution of (5) is 

$, (y )  = N(A, n )  exp[-y(A - n -$)I exp(--he-Y)L'nZh-2n-') ( 2 A  e-y) 

E ,  = 2A(n +&) - ( n  +&)' 

( 6 )  

(7) n =O, 1 , .  . . [ A  - $ ]  
([A - $ ]  being the greater integer smaller than A -f) where L',"'(x) are the associated 
Laguerre polynomials and N(A,  n )  is the normalisation constant. 

The ladder operators in this case are 

with 

A'$, $ , * I .  (9 ) 

H+= -d2/dy2+A2(1-e-y)2-A +I 4. (10) 

From the Schrodinger equation (5) we obtain the Hamiltonian 

The constant term -A +$ only displaces the spectrum. It makes the eigenvalue of the 
ground state equal to zero, E+,o=O. 

This Hamiltonian can be factorised as 

H+ = a+a  (11)  

a = d/dy + A (1 - e-y) -4  (12) 
a+ = -d/dy + A ( l  -e-Y) -f. (13) 

where 

We note, comparing (12) and (13) with (8), that these operators are not the creation 
and annihilation ones, and they satisfy the commutation relation 

[ a + ,  a ]  = -2A ePy. (14) 
From this relation we can define a Hamiltonian, which is the supersymmetric 

partner of the Hamiltonian ( l o ) ,  inverting the operators 

H- = ua+ = u+u - [ a + ,  a ]  = u+a + 2 A  e-y 

V- = A2(1 -eVY)'+2A e-y - A  +I 4. 

(15) 

(16) 

corresponding to the potential 

which is different from the original Morse potential. 
H+ and H- being supersymmetric partners (see equation (3)), equations (15) and 

(10)  have the same spectrum, but only (10) has a ground state with zero eigenvalue. 
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The eigenfunctions of (15) can be determined from the eigenfunctions $+ of (10): 

aH+CL+,n = ~&nCL+.n*H-a$+,n = ~ n a $ + , n .  (17) 

CL-,, = a*+,,. (18) 

Thus, the eigenfunctions I , ! - ,~  of (15) are 

To find the generalised potential we define new operators 

A = d/dY +f(y) 

A + =  -d/dy+f(y) 

and imposing that 

H- = AA’ 

we obtain the differential equation 

A 2 ( 1  -e-Y)2+2A e - ’ = ~ f ( y ) + f * ( y )  d 

which is a Ricatti differential equation having the solutions 

exp[-y(2h - 1) -2A e--”] 
r+ji exp[-jj(2A - 1) -2h e-’] dy 

f ( ~ ) = A ( l -  -’ -’+ e * 

where the constant r is arbitrary and we have chosen r > 0 to avoid singularities. 
The new operators satisfy the commutation relation 

(24) 

(25) 

exp[ -y(2A - 1)  - 2A e-’] = -2h e-y - 2 - 
dy d (  r+[;exp[-y(2h - 1 ) - 2 A  e-j] d j  

2 4 Y Y )  =-2A e-’ - 

and we can define a new Hamiltonian using the generalised operators (19) and (20): 

X+ = A + A  = AA’ + [A’, A ]  = AA’ - 2A e-Y - 24‘(y) 

corresponding to the potential 

“Ir, = A 2 ( 1  -e-y) - A  +a - 24’(y) 

which is different from the original Morse potential and also from V- given in (16). 
From supersymmetry we know that the spectrum of X+ is the same as the spectrum 

of (15) (except the ground state) and the eigenfunctions of X+ are associated with the 
eigenfunctions of H -  : 

A+H-$-,n = A‘E, ,$- ,~+X+A’$- ,~  = &,A+$-,,. (27) 

V+,,, =A+$-- , ,  (28) 

AV+,o = 0. (29) 

This relation tells us that the X+ eigenfunctions are 

and the ground state is given by 
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This means that 

exp[A(y+e-”)] exp( Jb’ + ( J )  dg). 

The new eigenfunctions ?P+,fl are determined from the original Morse eigenfunctions 
(6). The map between these eigenfunctions is found by using the relations (18) and (28): 

v+,n = A+a++,n. (31)  

Thus, the operator A’a takes the Morse eigenfunctions and transforms them into X+ 
eigenfunctions. Note that the X+ ground state is not included in this map; it is given 

The operator A+ alone permits us to map the eigenfunctions of (15) in the %’+ ones 
by (30).  

(this is shown by relation (28)) and the operator A makes the inverse since 

= A(A++_, , )  = a +-,fl. (32)  

The multiplication constant can be absorbed by the normalisation constant. Then we 
see that A maps %+ eigenfunctions into H- (15) eigenfunctions. The operators a and 
a+ play an analogous role between the Hamiltonians (10) and (15).  These relations 
arise because the supersymmetric algebra is contained in the FM (Alves and Drigo 
Filho 1988).  

We observe that, contrary to the usual FM, the operators that factorise the Hamil- 
tonian (10)  are not ladder operators. However, we can still construct the supersym- 
metric charges as defined in (1)  and (2)  and hence identify the bosonic operators d 
and d +  with a and a+ or A and A+. Consequently we have the supersymmetric algebra 
which allows us to generalise the potential. We also note that we have to know the 
solution of the initial system, the Morse potential in this case, in order to obtain the 
new solutions. 

The author is grateful to Drs N A Alves, V Pleitez and R M Ricotta for their useful 
suggestions in this letter. This work was supported by Fundagio de Amparo B Pesquisa 
du Estado de Slo Paulo, Brazil. 
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